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Abstract. In the era of Internet-scale applications, an increasing num-
ber of services are distributed over pools of thousands to millions of net-
worked computers. Along with the obvious advantages in performance
and capacity, such a massive scale comes also with challenges. Continuous
changes in the system become the norm rather than the exception, either
because of inevitable hardware failures or merely due to standard main-
tenance and upgrading procedures. Rather than trying to impose rigid
control on the massive pools of resources, we should equip Internet-scale
applications with enough flexibility to work around inevitable faults. In
that front, gossiping protocols have emerged as a promising component
due to their highly desirable properties: self-healing, self-organizing, sym-
metric, immensely scalable, and simple.
Through visiting a representative set of fundamental gossiping protocols,
this paper provides insight on the principles that govern their behavior.
By focusing on the rationale and incentives behind gossiping protocols,
we introduce the reader to the alternative way of managing massive scale
systems through gossiping, and we intrigue her or his interest to delve
deeper into the subject by providing an extensive list of pointers.

1 Introduction

With the advent of worldwide networks and the Internet, computer systems have
been going through an unprecedented shift in scale and complexity. Services that
are distributed on thousands, if not millions, of machines, are gradually becoming
commonplace.

Peer-to-peer systems are a well known example of massively distributed ser-
vices. They employ end-user computers, often in the order of thousands or even
millions. Each node acts both as a client of the provided service and at the
same time as a server, collaborating with other peers to provide this same ser-
vice. Examples of this first class of massive-scale systems include file sharing
networks [1–3], collaborative search engines [4], multicast systems [5, 6], pub-
lish/subscribe [7, 8], etc.

A second area in which scale has grown from large to massive is that of
data centers, providing services in a more traditional client-server fashion. For
the major companies providing Internet services, this is largely due to the need
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to serve more and more complex applications to an ever-increasing number of
clients. Note that the shift in scale does not concern only large companies. The
advent of data center externalization and virtualization offered by the cloud
computing paradigm allows short- and medium-scale companies to benefit from
potentially very large infrastructures. In the following section we describe the
important characteristics of large-scale distributed systems.

1.1 Challenges in Massive-Scale Distributed Systems

Both peer-to-peer systems and large data centers constitute large-scale dis-
tributed systems. Their massive scale, while allowing for an unprecedented ca-
pacity and performance potential, also comes with certain challenges. These
challenges must be addressed from the very conception of the system design,
supporting software, and applications.

First, centralized management is im-

All states

Correct states

Convergence

Fault Convergence/Recovery

Closure

Fig. 1: Principle of self-stabilization.

practical for systems of such scale, due
to the large number of entities involved,
be they computers or data items. Track-
ing membership (which nodes join or
leave the network), locating data and
services among millions of nodes, and
generally monitoring the system, are no
longer possible to realize in a centralized
manner. Such an omniscient node would
have to maintain a global and consistent
view of the system, becoming a bottle-
neck for system performance. Addition-
ally it would constitute a single point of
failure and a perfect target for attacks. Spreading the load of such operations
on multiple nodes is much more appropriate in large-scale systems. Then, each
node is responsible for only a fraction of global system knowledge, called the
node’s local view of the system. Maintaining individual local views is less com-
plex than maintaining a single, centralized, global, and consistent view. It allows
for greater scalability due to the elimination of single points of failure.

Second, systems of such scale are inherently of highly dynamic nature, either
due to nodes leaving, joining, or merely failing. If in small- and medium-scale
distributed systems faults were considered as exceptions and were mitigated by
traditional reparation mechanisms (e.g., checkpointing and restarting individual
nodes or the whole application), in large-scale systems faults must be considered
as the norm. The number of nodes joining and leaving the system during any
period of time is expected to be high. The rate at which nodes join and leave
is often referred to as the node churn (or churn) of the system. High level of
churn imposes that the removal of failed/leaved nodes and the insertion of newly
joined ones must be integrated at the core mechanisms used for building large-
scale applications and systems. The reader may find experimental studies of
churn in real systems in [9, 10].
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Third, the high complexity of large-scale distributed systems make their ex-
plicit management in case of misconfiguration or faults totally impractical. It is
thus vital that algorithms and protocols involved exhibit self-* properties: self-
configuration, self-stabilization and self-optimization are some but few examples
of these properties. The self-organization property, illustrated by Figure 1 en-
sures that divergence from a correct state of the system (e.g., only valid and
non-failed nodes are available as potential communication partners in nodes’
views) is possible but automatic recovery eventually happens as part of the pro-
tocols’ operation and not due to the help of some external mechanism (e.g.,
human operation or restarting of the system).

This paper focuses on the use of the gossip-based communication paradigm
for building large-scale applications.1

1.2 Outline

We seek to survey, motivate, and exemplify a representative set of gossip-based
building blocks for large-scale systems. These mechanisms are meant to be in-
tegrated as components of large and complex systems, and we give examples of
such integration whenever applicable.

The remaining of this document is organized as follows.

– Section 2 introduces gossiping, from its seminal use to modern version.
– Section 3 presents gossiping protocols that emerge random overlay networks.
– Section 4 presents gossiping protocols that emerge structured overlay net-

works.
– Section 5 presents gossiping protocols for overlay slicing.
– Section 6 presents gossiping protocols for data aggregation.
– Section 7 presents additional uses of gossiping protocol for large scale dis-

tributed systems.
– And finally, Section 8 concludes our work.

Note that for each section, we do not only provide the description and mo-
tivation of the corresponding protocol but also provide additional links that are
meant to guide the readings of a reader wishing to delve deeper into the subject.

2 Gossiping Protocols: From Traditional to Modern

Gossiping, also known as epidemic, protocols are not a new concept in computer
science. They have been around for nearly three decades. However, the daunting
Internet growth has created new challenges, and has shaped gossiping protocols
in a new way.

This section introduces the seminal gossiping system, Clearinghouse, as well
as the modern ones, explaining the reasons that led to the latter.

1 Another introduction to gossip-based networking can be found in [11].
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2.1 Clearinghouse: Synchronization of Database Replicas

The seminal paper by Demers et al. on the Clearinghouse project [12] introduced
the use of gossiping in medium-scale networks for propagating updates to replicas
of a database. The mechanisms introduced in this work still lie at the core of all
proposals for gossip-based data dissemination.

The Clearinghouse project [12] involved a database replicated across a set of
a few hundred replicas, dispersed across diverse geographic areas, where updates
were allowed at any one replica of the system. Maintaining consistency across
all replicas in the face of updates was a major objective. More accurately, the
objective was to maintain consistency across all alive replicas, given that indi-
vidual replicas would occasionally fail, as is the norm in any large scale system.
Furthermore, the system should be highly failure resilient, that is, the failure of
any node or set of nodes should not hinder the propagation of updates across
the remaining set of alive replicas.

This work introduced two gossiping algorithms for the propagation of updates
to all replicas, namely Anti-Entropy and Rumor Mongering. In Anti-Entropy,
each node “gossips” periodically, that is, it periodically picks a random other
node among all alive ones, and they exchange some data to synchronize their
replicas. Figure 2 illustrates an example of anti-entropy.

In Rumor Mongering, nodes are initially “ignorant”. When a node has a
new update, it becomes a “hot rumor”. While a node holds a hot rumor, it
periodically selects a random node among the alive ones, and forwards the update
to it. After having forwarded the update to a number of nodes that were already
hot rumors, it stops being a hot rumor and, thus, maintains the update without
forwarding it further. Figure 3 shows an example of rumor mongering.
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Fig. 2: Propagation of the update from node A using anti-entropy.
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Fig. 3: Propagation of the update from node A using rumor mongering.

2.2 Today’s challenges

Gossiping protocols have shown to possess a number of desirable properties for
data dissemination, notably fast convergence, symmetric load sharing, robust-
ness, and resilience to failures. The same applies for data aggregation, node
clustering, network slicing, and other forms of decentralized data manipulation,
as we will see in subsequent sections. We will be referring to these gossiping
protocols as traditional gossiping.

However, traditional gossiping protocols are based on a common assumption:
the complete view of the network by every node. This is in fact dictated by the
need of every node to periodically sample the network for a random other node
to gossip with. Although this assumption is acceptable for fixed sets of up to
a few hundred machines, it becomes a serious obstacle in networks that scale
to tens of thousands or millions of nodes. This is clear given the dynamicity
inherent in systems of such scale, given the probability of nodes to crash or
to voluntarily leave or join. Imagine the join of a single node triggering the
generation of millions of messages, to inform the millions of other nodes of its
existence.

Ironically enough, the solution to the complete network view assumption of
traditional gossiping protocols is given by a new generation of gossiping protocols
that handles overlay management. These protocols are generally known as the
Peer Sampling Service and will be studied in Section 3.

In the Peer Sampling Service, nodes maintain just a partial view of the net-
work, rather than a complete view. Periodically, a node picks a neighbor from its
partial view. They exchange some data, which more specifically is membership
information. That is, they send each other some of the neighbors they have. This
way nodes refresh their partial views, and update them with new information
on participating nodes. Deferring certain details to Section 3, these partial views
can provide nodes with links to other nodes picked uniformly at random out of
the whole network, bypassing the need for complete view of the network.

Figure 4 presents the model of executing traditional gossiping protocols (such
as gossip-based dissemination) on very large scale systems. Each node executes
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Fig. 4: Gossip-based dissemination using a Gossip-based Peer Sampling Service to
implement its selectPartner() operation.

(at least) two gossiping protocols. The first one (top) is the traditional gossiping
protocol needed by a certain application. The second one (bottom) is the Peer
Sampling Service, used to manage membership and serving as a source of uni-
formly randomly selected nodes from the whole network for the first gossiping
protocol.

2.3 The Gossiping Framework

We define a gossiping framework, which is generic enough to apply to all gossip-
ing protocols, both traditional and peer sampling ones. Each node (or peer) in
the system maintains a local, often partial, view of the system. This view can be
of various types: a replica of a database, a set of published events, localization
information, or even sets of other peers participating in the system.

Gossip interactions are pair-wise periodic exchanges of data among peers.
Each peer periodically selects a partner to gossip with, amongst the nodes it
knows in the system (selectPartner() function). Then, it selects the information
from its local view that will be exchanged with this partner (selectToSend()
function). The partner proceeds to the same operation, which results in a bidi-
rectional exchange between the partners. Thereafter, each of the two decides on
its new local view based on the information it had before the exchange (available
in its view) and the one received (in resp or req buffers). Additionally, extra ac-
tions (e.g., notifying the upper layers that the local view has changed) can be
taken depending on the protocol considered.

All the protocols we present in this document follow this very simple algo-
rithmic framework, where no global vision of the system is assumed whatsoever,
and where only local update decisions based on the local view and the received
information are key to local convergence, and as we shall see, to the global con-
vergence in the system as a whole.

Gossip-based networking is often based on probabilistic decisions (e.g., for
the selection of the partner, the selection of the data to send, etc.). The local
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(on P ) do every δ time units
// select exchange partner

Q← selectPartner()
// select exchange content

buf ← selectToSend()
// proceed to exchange

send buf to Q

// wait for response

receiveFrom(Q,resp)
// decide on a new view

view ← selectToKeep(view,resp)
// (optional) specific actions

processView(view)
end

→

←

(on Q) reception of request from P

// receive request

receiveFrom(P ,req)
// select exchange content

buf ← selectToSend()
// proceed to exchange

send buf to P
// decide on a new view

view ← selectToKeep(view,req)
// (optional) specific actions

processView(view)
end

Algorithm 1: Gossip-based interaction framework

decisions made by each node are often driven by local convergence criteria. The
convergence to a better local view according to these criteria leads to global
convergence: the state of the system as a whole, when carefully engineered, con-
verges to an expected property that in fine allows implementing the desired
service, without any assumptions on one node having a global view of the sys-
tem. Moreover, the many interactions between nodes in the system support a
certain level of redundancy, which is key to robustness: the loss of some of the
interactions (due to failed nodes, message loss, etc.) can impact the convergence
speed but seldom impact the eventual convergence. The local convergence vs.
global state is the key for the self-stabilization, self-repair and self-configuration
offered by gossip-based protocols.

2.4 Further reading

A number of systems employ gossiping techniques. Many are focused on scalable
group communication and multicast [13–19]. Others have focused on data aggre-
gation [20], live streaming of video [21], maintenance of Distributed Hash Table
routing tables [22], social network links to propagate data more efficiently [23],
or specific network characteristics for gossiping with lower cost [24]. Finally, a
number of researchers have worked on theoretical analysis of gossiping proper-
ties [25,26].

Dynamo [27] is a distinguished example of a gossip-based system applied in an
industrial environment. More specifically, it is used in Amazon’s infrastructure
to spread indexing information across all servers involved in a Distributed Hash
Table handling crucial data, such as customer records.
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3 Random Overlays

As explained in the previous section, a number of gossiping protocols rely on
the ability to select random samples of alive nodes from the network. Clearly,
providing each node with a complete view of the network is unrealistic for very
large scale networks, particularly in the face of node churn, that is, nodes join-
ing and leaving. Similarly, building a centralized service for maintaining such
information is not a viable solution either.

Along these lines, a class of entirely decentralized protocols has emerged
to collaboratively maintain membership information. These protocols are collec-
tively known as the Peer Sampling Service [28], and they are based on a gossiping
framework themselves.

In a nutshell, each node maintains a small (e.g., a few dozen nodes) par-
tial view of the network, and periodically refreshes its partial view by gossiping
with one of its current neighbors. It turns out that, by following this gossiping
paradigm with certain policies, the partial view of each node constitutes a pe-
riodically refreshed sliding random subset of all nodes in the network. Making
a random selection out of a random subset of all nodes is equivalent to mak-
ing a random selection out of all nodes. This is exactly the assumption which
traditional gossiping protocols are based on: sampling peers from the whole net-
work at random. It becomes now evident that, by employing a Peer Sampling
protocol, a node is able to select peers at random out of the whole network by
means of a local operation. This essentially overcomes the scalability barrier for
executing traditional gossiping protocols in very large scale networks.

Sampling peers uniformly at random is not the sole utility of Peer Sampling
protocols. It turns out that by running a Peer Sampling protocol on a large set
of nodes, the nodes self-organize in an overlay that shares a lot of similarities
with random graphs and inherits most of their properties. Namely, the overlay
becomes very robust and extremely resilient to failures, in the sense that failures,
even large scale ones involving much more than half of the nodes do not put the
connectivity of the overlay at risk.

Peer Sampling refers to a family of protocols, whose design space is exten-
sively analyzed in [28]. This analysis is out of the scope of this paper. Instead,
we will focus on the two most prominent instance protocols of the Peer Sampling
Service, namely Newscast [29, 30] and Cyclon [31].

3.1 The Newscast Protocol

In Newscast each node maintains a small partial view of the network of length
`, and periodically picks a random node from it to gossip with. The two nodes
share with each other their views, including newly generated links to themselves.

The principal design objective in Newscast is to keep overlay links fresh
by giving newer links priority over older ones. In doing so, Newscast policies
consider the age of a link, that is, the time elapsed since the link was injected
into the network by the node it points at.
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Link ages can be precisely determined if links are timestamped at generation
time, assuming network-wide time synchronization is possible. Otherwise, they
can be sufficiently approximated by associating each link with an age counter.
Here we follow the second—more realistic—approach.

In terms of our gossiping framework shown in Algorithm 1, Newscast im-
plements the following policies:

selectPartner() Select a random node from the view. Also, increase the age of
all nodes in the view by one.

selectToSend() Select all nodes from the view, and append own link with
age 0.

selectToKeep() Merge received links with own view, sort by the age, and keep
the ` freshest ones, including no more than one link per node.

Note that after a gossip exchange between nodes P and Q, the two nodes have
the same view, except for a link to each other. This, however, is a temporary
situation, as next time they gossip (either initiating it or being contacted by
others) their views will most likely be mingled with views of different other
nodes.

3.2 The Cyclon Protocol

Cyclon [31] is a Peer Sampling protocol, where view refreshing is based on
exchanging contacts. That is, a node sends a few links to its gossiping partner,
and receives the same number of links in return. Each node accommodates all
received links by discarding the links it just sent away. The main intuition behind
this operation is to mix links, resulting in overlays resembling random graphs.

Like in Newscast, the age of a link is also utilized in Cyclon, alas in a
different way. It is used to select which neighbor to gossip with, rather than to
select which links to keep in the view. This serves two fundamental goals, that
will be discussed later in this section.

Let g denote the number of links traded in a gossip exchange. In terms of
our generic gossiping framework shown in Algorithm 1, Cyclon employs the
following policies:

selectPartner() Select the node whose link has the oldest age. Also increase
the age of all links in the view by one.

selectToSend() Select g random links, and remove them from the view. If this
is the initiating node, the link selected in selectPartner() should be among
these g links, and after removal it should be substituted by a link to itself,
with age 0.

selectToKeep() Add all g received links to the view, by replacing the g links
selected in selectToSend().

Note that after a gossip exchange, the link between the two nodes involved
changes direction, as illustrated in Figure 5. E.g., if node P knows node Q and
selects it as a gossip partner, after the gossip exchange P will have discarded Q
from its view, while Q will deterministically know P . In other words, P ’s indegree
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Fig. 5: An example of swapping between nodes 2 and 9. Note that, among other
changes, the link between 2 and 9 reverses direction.

was increased by one, while Q’s indegree dropped by one. Third nodes’ indegrees
have not been altered, even if some nodes changed from being neighbors of P to
being neighbors of Q or the other way around.

This provides for an interesting self-adaptive mechanism for indegree control.
A node’s indegree increases when it initiates gossiping, which happens at con-
stant intervals (due to Cyclon’s periodic operation). However it decreases when
it is contacted by another node, which happens at a frequency proportional to
the node’s indegree: the more known you are, the more gossip exchanges you
will be invited to in a given period. Statistically, if exactly ` other nodes know
you, you will be contacted exactly once per gossiping period, and as you will
also initiate exactly one gossip exchange, your indegree will remain stable and
equal to `. However, the lower a node’s indegree is below `, the faster it will grow
higher, while the higher it is above `, the faster it will drop lower. This leads
to a natural equilibrium of indegrees, a self-adaptive mechanism for balancing
links evenly across all nodes.

Regarding the selection of the oldest link for a gossip exchange, as mentioned
earlier it serves two goals. The first one is to limit the time a link can be passed
around until it is chosen by some node for a gossip exchange. Since by selecting
a link for a gossip exchange also removes the link from the network, selecting
always the oldest one prevents links to dead nodes from lingering around indef-
initely. This results in a more up-to-date overlay at any given moment.

The second—and far less obvious—goal is to impose a predictable lifetime
on each link, in order to control the number of existing links to a given node at
any time. During one gossiping period, a node P initiates one gossip exchange,
therefore pushing its oldest age link out of its view, and increasing all other
links’ ages by one. Also, P is contacted on average by one other node for a
gossip exchange, thus accepting a new link of age 0 in its view. As a result,
a node’s view contains on average one link of each age, from 0 to ` − 1. This
means that links selected for gossip exchanges are typically of age around `− 1.
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Fig. 6: Some main properties of Newscast and Cyclon.

In other words, a pointer has a lifetime of about ` cycles. This implies that
besides the constant birth rate of links, their death rate is also close to constant,
which results in an almost constant population of ` links for each node. This is
validated by extensive simulations.

3.3 Properties

Although a detailed discussion on properties of these protocols is out of the scope
of this paper, it is worth noting the effect that certain policies have on some of
the properties.

Figure 6(a) shows the indegree distribution for Newscast and Cyclon,
running on 100K nodes with view length ` = 20 for both protocols. The self-
adaptive mechanism for indegree control in Cyclon detailed in Section 3.2,
becomes evident in this graph. Indegrees follow a very narrow distribution, cen-
tered around the nodes’ outdegree (i.e., their view length). Each node has an
indegree of `±3. This results in higher robustness of the overlay in the face of er-
rors, as no node has indegree of lower than 17, which means there are no “weak
links” in the topology. In Newscast, the indegree distribution is very much
spread out, which is an expected outcome of the nature of gossip interactions: a
link to a node can either be duplicated on both gossiping partners or completely
discarded, which results in high fluctuations of node indegrees. Specifically, we
note that there are several nodes with indegree 0, becoming more vulnerable
than others in the face of failures.

Another implication of the indegrees is that Cyclon offers much better load
balancing, as nodes are invited to the same number of gossip exchanges per time
unit. Contrary to that, in Newscast there is a long tail of nodes with inde-
grees up to 60, which receive proportionally more gossip requests (and therefore
load) per time unit. Nevertheless, extensive simulations in [28] showed that in
Newscast nodes fluctuate across the whole spectrum of indegrees withing a
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few gossiping periods, therefore in the long run load is fairly balanced among
Newscast nodes as well.

Figure 6(b) shows the efficiency of each protocol in relieving the overlay of
links to dead nodes. More specifically, in this experiment an overlay of 100K
nodes with views of length ` = 20 was let emerge by each protocol. At some
point a very large failure was simulated by killing half of the network, and
letting exactly 50K nodes survive. At that point, statistically `/2 links of each
surviving node was pointing at dead nodes, accounting to 500K links. The graph
in Figure 6(b) shows how the total number of links to dead nodes drops in each
of the protocols, as a function of cycles (a time unit representing one gossiping
period). Newscast’s eagerness on keeping the freshest links is evident in this
graph, as links to dead nodes vanish within six cycles. Contrary to that, Cy-
clon’s self-adaptive control of links’ lifetimes to ` gossiping periods is clear in
this figure, as it takes exactly ` cycles for eliminating all links to dead nodes.
With respect to this metric, Newscast is more efficient, and shows it is better
at handling overlays of very high node churn.

3.4 Further reading

Work on overlay management for random overlays assumes the understanding
of fundamental concepts such as random graphs [32], scale free networks [33],
and small worlds [34,35].

With respect to computer networks, Lpbcast [17] is a peer sampling protocol
targeted at broadcasting messages. Scamp [36] is a reactive protocol that creates
a static overlay that resembles a random graph. HyParView [37] is a gossiping
protocol that creates overlays targeted at disseminating data in the face of high
node churn.

4 Structured Overlays

Besides creating random overlays as a basis for massively decentralized systems,
many distributed applications require structured overlays to operate on. Exam-
ples include, but are not limited to, clustering nodes based on interest (e.g.,
for a file sharing system), sorting nodes based on some metric (e.g., ID, load,
memory, etc.), forming more complex structures (e.g., distributed hash tables,
publish/subscribe systems, etc.) and more.

T-Man [38, 39] and Vicinity [40, 41] are two very similar gossiping pro-
tocols that provide a generic topology construction framework, suitable for the
construction of a large variety of topologies. Through such a framework, nodes
flexibly and efficiently self-organize in a completely autonomous fashion to a
largely arbitrary structure. The advantages of these frameworks are their generic
applicability, flexibility, and simplicity.

The target topology is defined by means of a selection function, which selects
for each node the set of ` neighbors it should be linked to. This selection function
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is executed locally by every node to determine its neighbors. The selection is
made based on some application-specific data associated with each node, which
is called the node’s profile. In topology construction protocols, each link to a
node also carries that node’s profile.

When fed with the complete list of nodes and their profiles, the selection
function returns a node’s optimal neighbors for the target topology. When fed
with a subset of the nodes, it returns a selection of neighbors that brings the
overlay as close to the target topology as possible.

Typically, the selection function is based on a globally defined peer proximity
metric. Such a metric could include semantic similarity (see Section 4.1), ID-
based sorting, domain name proximity, geographic- or latency-based proximity,
etc.

Like in other gossiping protocols for overlay management, each node main-
tains a partial view of the network of length `. As mentioned above, each link
to a node also carries that node’s profile. The protocol framework is similar to
that of Peer Sampling Service protocols, except that nodes decide which links
to keep in their views based on the selection function.

In the context of the hooks defined in our generic gossiping framework of
Algorithm 1, topology construction protocols employ the following policies:

selectPartner() Select a random link from the view.
selectToSend() Select all links from the view, and append own link with own

profile.
selectToKeep() Merge received links with own view and apply the selection

function to determine which ` links to keep in the view, including no more
than one link per node.
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Fig. 7: Example of a Vicinity exchange and resulting views. The distance here is the
2D Euclidean distance and the nodes seek to find the ` = 3 closest nodes in terms of
this distance metric.

Figure 7 depicts a sample gossip exchange for topology construction, assum-
ing a selection function that opts for minimizing the 2D Euclidean distance
between nodes.

A key point in topology construction protocols is the transitivity exhibited by
the selection function. In a selection function with high transitivity, the “better”
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a selection node Q is for node P , the more likely it is that Q’s “good” selections
are also “good” for P . This transitivity is essentially a correlation property
between nodes sharing common neighbors, embodying the principle “my friend’s
friend is also my friend”. Surely, this correlation is fuzzy and generally hard to
quantify. It is more of a desired property rather than a hard requirement for
topology construction. The higher the transitivity, the faster an overlay will
converge to the desired topology.

There are two sides to topology construction. First, assuming some level of
transitivity in the selection function, a peer should explore the nearby peers that
its neighbors have found. In other words, if P2 is in P1’s view, and P3 is in P2’s
view, it makes sense to check whether P3 would also be suitable as a neighbor of
P1. Exploiting the transitivity of the selection function should then quickly lead
to high-quality views. The way a node tries to improve its view resembles hill-
climbing algorithms. However, instead of trying to locate a single optimal node,
here the objective is to optimize the selection of a whole set of nodes, namely
the view. In that respect, topology construction protocols can be thought of as
distributed, collaborative hill-climbing algorithms.

Second, it is important that all nodes are examined. The problem with fol-
lowing transitivity alone is that a node will be eventually searching only in a
single cluster of related peers, possibly missing out on other clusters of also
related—but still unknown—peers, in a way similar to getting locked in a lo-
cal maximum in hill-climbing algorithms. This calls for randomized candidate
nodes to be considered too in building a node’s view. This points directly at the
two-layered approach depicted in Figure 4.

survey of overlay networks [42]

4.1 Test case: Interest-based Overlays

A direct application of Vicinity and T-Man is the self-organization of nodes
participating in a social network in a way that reflects their interests. Social
networks inherently exhibit interest locality, that is, a user encompassing content
on a certain topic is highly likely to address additional content on that same topic
or related ones. Additionally, social networks tend to share many properties with
Small Worlds [43,44], that is, highly clustered networks of short diameter. High
clustering (i.e., the friend of a friend is likely to be a friend) implies a highly
transitive selection function in a topology construction protocol.

In [40], Voulgaris and van Steen apply Vicinity (with Cyclon as the under-
lying Peer Sampling Service instance) on nodes participating in the e-Donkey [45]
file sharing network, to cluster them based on the degree of overlapping in their
shared file collections. The selection function sorts a node’s neighbors based on
the number of shared files in common to the node’s own collection, and selects
the top ` ones. The experiments on 12,000 nodes indicate that by setting the
view length to ` = 10 neighbors, over 90% of the optimal relationships between
nodes are established within 50 rounds of the protocol, starting from an arbitrar-
ily connected initial topology. Furthermore, these 10 “semantic neighbors” per
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node prove to be capable of serving on average one third of each node’s queries
for new files, a ratio that significantly boosts decentralized search performance.

The same setting can be applied for automated recommendations in a decen-
tralized file sharing system. Files that are popular among someone’s “semantic
neighbors” are likely to be interesting for that user as well.

4.2 Further Reading

GosSkip [46] employs gossip to implements skip lists [47] in a distributed fashion
similar to SkipNets [48]. RayNet [49] uses gossiping to create structured overlays
inspired from Voronoi diagrams. Other work, like [50] create overlays that resem-
ble Small World networks [43,51]. Rappel [52] uses gossip to leverage clustering
of interests to build dissemination trees.

5 Overlay Slicing

Overlay slicing is an alternative form of overlay management to the cluster-
ing mechanisms introduced in Section 4. It relates to the problem of overlay
provisioning. Slicing allows to separate a network in relative-sized groups in a
self-organizing manner.

Here, we are no longer interested in creating a graph of links between nodes
in the network that form a given structure, but rather to split the network in
a set of slices. Each slice has a size that is expressed as a proportion of the
total network size, and that can aggregate the nodes with the highest value for
a given, node-specific metric. It is important to note here that the actual size of
the network does not need to be known to proceed to the slicing operation.

Slicing has many useful applications. It allows to provision parts of the net-
work to dedicate each such parts to a particular applications, or to different
services pertaining to one application:

– One may want to provision the most powerful nodes to support the critical
services of some application. In this case, each node is attached to a metric
that depicts its relative power. One can think of the available bandwidth, the
available storage capacity, the processing power, among others. The nodes
that have a smallest value for this metric can be dedicated to less critical
operations of the applications, e.g., the powerful nodes can support a naming
mechanism that allows to locate data or services, while the less powerful
nodes can support a less critical part of the application, such as caching or
monitoring mechanisms.

– One may want to split the network into groups regardless of the nodes’
characteristics, in order for each slice to be used for a different application
with the same nodes’ characteristics distribution for each slice. For instance,
if a network needs to support three different applications, and the nodes
supporting each application must be dedicated to only this application, one
can express the size of each slice to be 1

3 of the network regardless of the
nodes’ characteristics.
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An example of slicing based on nodes’ characteristics is given by Figure 8(a).
Here, we are interested in creating three slices. The first slice shall contain half
(50%) of the network, and contain the nodes that have the smallest value for
the considered metric (say, the available disk capacity). The second slice must
contain the 30% nodes that have intermediate values for this same metric. Fi-
nally, the third slice must be composed of the 20% nodes with the highest values
for the metric, say, with the highest available disk capacity. We note that we do
not want the assignment of nodes to slices to be static. If the metric changes
for some node, e.g., the disk capacity is reduced due to the use of this resource
by another application running on the same machine, then the self-organization
objective requires that the assignment of nodes to slices reflects this change, and
so on for the lifetime of the application (unless one needs to fix the assignment
once and for all due to application requirements, which would require freezing
the assignment).

The assignment of one node to some slice is autonomous. After the gossip-
based overlay slicing mechanism has run for enough cycles, each node must be
able to determine which slice it belongs to. We consider that the parameters
and relative size of slices are known by all nodes, that is, each node knows what
metric to consider for itself and its peers, and what are the relative sizes of the
slices (e.g., {50%,30%,20%} in the case of Figure 8(a)).

The overlay slicing protocol based on gossip-based networking that we present
in this document is the one proposed by Jelasity and Kermarrec in [53]. In order
to determine which slice they do belong to, nodes must determine what is the
relative position of their metric value in the set of all metric values, if such
an ordered set was known. Obviously, due to the large-scale of the considered
network, it is impractical to consider that any one node will know this sorted
set. The relative position must be known without globally sorting all the nodes’
metrics in order to decide on any one node’s position. This relative position
determination is illustrated by Figure 8(b). Let us consider node J. Here, in
order for J to determine that it belongs to the second slice, the node must
determine an approximation of:

– the number of nodes that have a higher value than J for the metric;
– the number of nodes that have a smaller value than J.

The position of nodes in the set is approximated by a value in [0:1]. More
specifically, this position is the relative position of the node in the set of all
metric values. Note that while the relative positions are contained in a bounded
range, this is not the case for the metric values, which can range over any space.

The case where the network must be split into relative-sized slices but in-
dependently of any metric is simply a special case. In order to allow a random
sampling of nodes in each slice (according to the slice size relative to the size of
the network of course), each node simply emulates a metric by picking a random
value in [0:1] as its metric value.

Each node starts with a random relative position in [0:1], which obviously is
unrelated to the final expected position. This starting position is illustrated by
the upper representation of Figure 8(c). We can see here that the initial relative
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Fig. 8: Gossip-based slicing : problem representation and determination of the relative
position using gossip-based sorting.
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position of J, which is around 0.3, has nothing to do with the expected relative
position, that is, around 0.6.

After deciding randomly on these initial values, nodes engage in a gossip-
based self-organization, that must lead to each node holding a relative position
that reflect its slice, as illustrated on the bottom representation of Figure 8(c).
Here, one can see that the relative position of J, being 0.64, reflects correctly the
slice it must belong to. The final positions are obtained by pair-wise gossip-based
sorting of the relative position with respect to the metric of the two nodes. Each
node has a view, of bounded size c, and can pick random nodes from a Peer
Sampling Service.
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(a) selectPartner() operation: there is no order violation for peer E, but there
is an order violation for peer B (B’s metric value 23 is smaller than C’s metric
value 24 but their metric value have an opposite order: 0.2>0.1). B is selected.
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Fig. 9: A pair-wise interaction for gossip-based sorting that exchange the relative
position of nodes B and C and resolves an order violation w.r.t. their metric values.
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Figure 9 represents a single gossip-based interaction between two nodes B
and C. This operation, following the framework of Algorithm 1, is as follows:

selectPartner() (Figure 9(a)) The peer selects at random a partner for the
exchange among the peers it knows, including the peers it obtains from the
Peer Sampling Service (see Section 3), and for which an order violation exists
(that is, the metric of the peer is higher than the metric of the initiating node
but their relative values follow a different order, or conversely). This peer
is selected in order to proceed to an exchange of the relative values and to
resolve the order violation.2

selectToSend() (Figure 9(b)) The node sends its entire view, and includes itself
in the sent view (as links are unidirectional, there is indeed no guarantee that
B would know the metric value and the relative position of C that it needs
for the exchange).

selectToKeep() (Figure 9(c)) If there still is an order violation between the
gossip initiator and the partner, the partner exchanges its own relative posi-
tion with the one of the initiator, and returns its view in the very same way.
The initiator, upon receiving the view, also trades its relative position with
the one of the partner. Henceforth, the order violation is resolved. Note that
it can happen that the order violation that was witnessed by the initiator
did not longer exist. Indeed, the partner node may have already exchanged
its value with another node since the last update of the view entry, resolving
the violation. In this case, the gossip exchange is simply cancelled.

Each such gossip step reduces the global disorder metric, that is, the average
squared distance between a nodes’ relative position and its “correct” position.
This metric is simply the standard deviation over the relative position incor-
rectness. Interestingly, the convergence of the gossip-based sort is empirically
independent from the size of the network. Within 20 cycles (during one cycle,
each node exchanges with one other node if there exist one with an order vi-
olation in its view or in the Peer Sampling Service view), the average error is
no more than 1% of the network size, already allowing a very good estimation
of the slice a node belongs to: in a 10,000 nodes network, nodes are on aver-
age 100 positions away from their ideal position (which means that, if they are
not considered in the correct slice, they still have very similar metric values to
the correct nodes for that slice). If one lets the protocol converge for 40 cycles,
the average error becomes 0.1%, which is a negligible value in a dynamic and
large-scale systems such as the ones considered.

5.1 Further reading

In [54], the authors improve over the original slicing protocol presented in [53]
in two ways. First, they propose measures to speed up the convergence of the

2 Note that an additional aging mechanism can allow to ensure that nodes are con-
tacted within a bounded amount of time, in order to detect changes/failures in a
timely manner. For the sake of simplicity, we do not consider this optimization in
this paper and encourage the reader to refer to [53] for details.
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protocol by using a local disorder measure for the selectPartner() operation:
peers choose the gossip partner with which an exchange is the most likely to re-
duce the global disorder measure. Second, they revisit the use of random values
sorting for the slicing operation. The rationale is that, when the metric value is
based on the nodes’ characteristics, e.g., the uptime or the available bandwidth,
there is a correlation between this metric and the relative position that tends
to bias the distribution of relative values. Instead of using random values sort-
ing, the authors propose to estimate the rank of nodes based on the history of
recently-seen values for the relative positions, which proves to be more robust to
churn and bias. In [55], the Sliver protocol is presented, that integrates further
optimizations to gossip-based slicing.

6 Distributed Aggregation

Aggregation is the collective estimation of system-wide properties, expressed as
numerical values. It is a key functionality to a number of large-scale distributed
systems, in particular to implement monitoring mechanisms.

The properties that can be aggregated by gossip-based distributed aggrega-
tion can relate to a large variety of metrics. One can mention the average system
load, the identity of the node with the lowest or highest load or disk capacity,
the total available disk capacity in a distributed storage system, among others.
As we shall see in the Subsection 6.1, aggregation can also be used to solve in
an elegant and autonomous way a difficult problem in decentralized large-scale
systems: network size estimation.

Each node starts with its own value for the metric that is to be aggregated.
Thereafter, aggregation should be carried out collectively by all participating
nodes in a purely distributed fashion, and the result(s) of the aggregation should
become known to all nodes.

We present as an example in this section a basic aggregation protocol that
follows the push-pull gossip-based networking paradigm. This protocol appeared
in [56]. Each node has a local estimate of the property being aggregated and a
set of neighbors. At random times, but once every δ time units, a node picks a
random neighbor and they exchange their local estimates. This random neighbor
is typically obtained by calling the getPeer() operation of the Peer Sampling
Service (see Section 3), as we assume that no global view of the system exists at
any node. After the exchange, each node updates its local estimate based on its
previous estimate and the estimate of the partner it has received.

Averaging constitutes a fundamental aggregation operation, in which each
node is equipped with a numeric value, and the goal is to estimate the average,
or arithmetic mean, of all nodes’ values. We start by describing the calculation
of the average, and later show how it can form the basis for the computation of
other aggregates, as detailed in Jelasity et al. [56].

In averaging, a node updates its estimate to the average between its previous
local estimate and the estimate received. That is, when nodes p and q with
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estimates sp and sq proceed to a gossip exchange, their estimates are updated
as follows:

sp = sq =
sp + sq

2

Note that the sum of the two nodes’ estimates does not change, therefore neither
does the global average. However, the variance:

V =

√√√√√ 1

N

N∑
p=1

(
sp −

N∑
q=1

sq/N

)2

decreases after each exchange, unless sp and sq were already equal, in which case
it remains unaltered. (N denotes the size of the system.) Experiments and theo-
retical analysis in [56–60] show that the variance V converges to zero. Moreover,
it converges at an exponential rate, whose exponent depends on the communi-
cation graph defining the nodes’ neighbors. The rule of thumb is that the higher
the link randomization in an overlay, the faster the aggregation convergence. We
propose to illustrate this fact by some experimental figure based on simulation.
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Fig. 10: An exchange in average calculation.

network, with the availability of
a Peer Sampling Service [28], namely
the two instances Cyclon [31]
and Newscast [61] described in
Section 3. In this case, the gossip
exchange partner for the aggre-
gation is obtained from the Peer Sampling Service’s view. For the sake of simplic-
ity, we consider only a static network in which either Cyclon or Newscast has
converged and where the views are frozen for the duration of the aggregation.
Similar conclusions as the ones we present for a static network can be made with
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a dynamic network where nodes’ views keep evolving at each exchange cycle. Fig-
ure 11 presents the evolution of the variance as a function of the aggregation
cycles (δ time units) elapsed. To have a point of reference, we plot the variance
evolution for averaging over a fully connected graph, in which a node exchanges
estimates with a node picked randomly out of the whole network.

First, we observe that in all cases the variance converges to zero at an ex-
ponential rate. Second, we record a clear difference between the aggregation
efficiency of static Cyclon and Newscast Peer Sampling protocols, the for-
mer converging significantly faster. This is a direct consequence of Cyclon’s
narrow in-degree distribution and very low clustering. Each node has roughly
the same number of incoming links, and therefore participates in roughly the
same number of estimation exchanges as all other nodes. Moreover, the very low
clustering ensures that each node’s initial value is uniformly spread across “all
directions” of the network, not being confined to any highly clustered subset.
This leads to faster convergence of nodes’ estimates to the global average. On
the other hand, Newscast’s skewed in-degree distribution results in an uneven
distribution of estimation exchanges across nodes. Also, due to high clustering,
local estimates spread quickly within highly clustered communities, but take
longer to spread globally.

These observations illustrate that the type of Peer Sampling Service used can
have an important impact on the efficiency of the protocols that use them as a
basis, and, as pointed out in Section 3, one must carefully consider the impact
of the parameters of the Peer Sampling Service on the served protocols.

Other aggregates. The computation of the geometric mean is similar to the com-
putation of the arithmetic mean (average) we just presented. It also exhibits the
same convergence properties. One simply needs to replace the update function
by: sp = sq =

√
sp × sq. The computations of the the average (arithmetic mean)

and the geometric mean serve as a basis for the computation of most aggre-
gates. Let us consider however for now that we know the number of nodes in the
network N . Obviously, knowing this number in a large-scale system is all but
a trivial task; however we explain in the next Subsection how we can actually
obtain it based on a gossip-based aggregation calculation.

Based on N and gossip-based aggregation, the following aggregates can be
composed:

– The sum of all values in the system, which is useful for instance if one
needs to know the total available disk space in a distributed, collaborative
data storage system, is simply obtained by multiplying the locally available
arithmetic average by the number of nodes: S = sp ×N .

– Similarly, the product can be composed with the geometric mean and the
size of the network: P = sp

N .
– Finally, the variance can be composed with the computation of the arithmetic

average of initial values (here, denoted as avg(sp)) and the arithmetic average
of the squares of the initial values (here, avg(sp

2)):

V = avg(sp
2)− (avg(sp))2
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Finally, the computation of the minimal and maximal values is also possible
using gossip-based aggregation. These computations are simply performed by re-
placing the update function by: sp = sq = min(sp, sq), or sp = sq = max(sp, sq)
respectively. One can note here that the propagation of the minimal or the maxi-
mal value from the node where it was present initially, to all nodes in the system,
will be strictly similar to what a propagation of a single value using the anti-
entropy mechanism introduced in Section 2 would be, if only one value (that
is, this minimum or maximum) is considered and each node periodically polls
another, randomly chosen node for the availability of this value.

6.1 Decentralized System Size Estimation using Aggregation

We have considered in the previous description of the sum and product composed
aggregations that an important parameter, the total size of the system N , was
supposedly available but without explaining how it was obtained. Knowing the
total size of a large-scale system is not a trivial task. As no node has a global view
of the system, and as the population of nodes is dynamic, the knowledge of N
cannot be based on membership information. It is instead necessary to engage
into a specific protocol for determining this number N , or more specifically
to determine a sufficiently precise estimation of it (as we consider inherently
dynamic networks, an exact size estimation would be impractical anyway).

In this Section, we present the use of aggregation for calculating the size of
the network in an autonomous manner [56].

Note however that other techniques exist for large-scale decentralized size
estimation, that are not necessarily based on gossip-based networking. For in-
stance, Kostoulas et al. [62] rely on interval density sampling of the history of
hashed nodes’ identifiers over a bounded range to determine the population of
nodes in the system; Massoulié et al. propose to use random walks methods and
the principle of the inverse anniversary-problem to determine the size of the net-
work based on the occurrences of collisions amongst random walkers [63]. These
techniques are experimentally compared to the one we present in this document
in [64].

The idea behind the peer counting based on aggregation is conceptually
simple: one single peer in the system starts with the value 1, and all other
peers start with the value 0. The average value of all the starting values is thus
(
∑

N−1 0)+1

N = 1
N , and this is the value that all local estimates will be equal to

after the convergence of the gossip-based aggregation. Thereafter, each peer can
autonomously use the inverted value of their local estimate to infer N .

However, there is no direct possibility for a single peer in the system for
deciding which one of them will hold this initial value of 1 while ensuring that
the others will hold the value 0. There is indeed no pre-existing omniscient peer
that can decide that it can act as such a leader for the aggregation start, or
this would require a global view of the network, contradicting the large-scale
characteristics of the network. Several decentralized mechanisms exist to decide
upon the initial peer in an autonomous way and without the need to maintain
any global information. We simply sketch one such mechanism below.
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We allow several concurrent instances of the average computation. Each such
instance is associated with a different peer starting with the value 1. This peer
is called the leader of each instance. The messages exchanged during the gossip-
based aggregation are tagged with a unique identifier, e.g., the identifier of the
leader for the corresponding instance. We note already that running several
instances has the inherent advantage of added stability: each node cannot only
base its estimation on one, potentially imperfect aggregate (if the system has
not converged, or due to high levels of churn), but on the average of several such
aggregates. Nodes decide to act as a leader for a new instance autonomously,
based on a parameter i that denotes the target average number of gossip cycles
one requires between the start of two aggregation instances. Each node knows
the current estimate of the system size (or a reasonable guess for the first round),
denoted by Ne. Each node decides at each of the aggregation cycle, that it will
start a new aggregation of which it will be the leader with a probability of i

Ne
.

In order to not let the number of local aggregates grow indefinitely, and in
order to support variations in the system size, a periodic restarting mechanism is
used. The time is divided in epochs, that are local to each node but that use the
same duration λ for all nodes. At the end of an epoch, a node delivers the average
of the local size estimates obtained during the last epoch to the application, and
starts collecting new estimates for the current epoch. The garbage collection of
previously known estimates can be done when one entire epoch has passed since
their delivery to the application, as no other node will send a gossip exchange
request pertaining to these values anymore. The duration of the epochs allows to
express the tradeoff between the reactiveness of the size estimation to changes,
versus the accuracy of this estimation.

7 The Many Other Uses of Gossip-Based Networking

In this Section, we wish to give the reader a quick overview of the many other uses
of gossip-based networking that we did not introduce in details in this paper.
Our goal is not to be comprehensive in surveying the usages of gossip (that
would require a monograph on its own), but rather to highlight the fact that
gossip-based networking can be applied in a wide range of large-scale distributed
systems-related problems.

7.1 Self-organizing Publish and Subscribe

The publish and subscribe communication paradigm allows to greatly simplify
the design of large-scale applications by providing a decoupled communication
model. The producers of information do not need to know the interested con-
sumers of the information they produce. Similarly, the consumers do not need to
know beforehand which node is likely to issue information that match their inter-
est. Here, producers simply publish to the publish and subscribe middleware, and
consumers can express their interest in new data by the means of subscriptions.
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It is then the system’s responsibility to match the publications to the existing
subscriptions, and to route the messages to all interested subscribers. Publish
and subscribe mechanisms are very appealing for the design of large-scale appli-
cations as they allow to delegate the management of the application data flow
to an external service.

Gossip-based networking is a strong contender to build and operate publish
and subscribe services. One typically distinguishes between publish and sub-
scribe mechanisms based on the expressiveness allowed for the subscriptions.
The simplest model, topic-based, allows nodes to register their interest to a set
of predefined topics, and publications are also attached to one of these topics.
TERA [65] is an example of a topic-based publish and subscribe mechanism that
leverages the principles of gossip-based structure emergence (Section 4) and a
modified Peer Sampling Service. Gossip-based interactions allow to emerge clus-
ters where the nodes interested in the same topic are linked. The publication
then requires to reach the correct group, which is made possible by a biased
peer-sampling mechanism and random walks, and then to disseminate among
the group using gossip-based dissemination. The Rappel system [52] also lever-
ages gossip-based networking to construct dissemination structures that take
into account both the network characteristics (delays) and the presence of clus-
tering in the users’ subscriptions to reduce the number of links. STaN [66] is
another system that leverages gossip for creating a network where nodes with
similar interests are grouped together, with the additional guarantee that the
subscriptions of nodes are not made public.

Content-based publish and subscribe allows expressing subscriptions based
on the content of the events. This is a more powerful model, but since the
matching of publications to subscribers shall be done dynamically for each pub-
lication, it is typically more complex to support. Sub-2-Sub [8] proposes to let a
routing layer emerge from the use of the Vicinity [40] gossip-based networking
framework. The very structure of the overlay that emerges allows publications
to reach all interested subscribers autonomously, while the system inherits the
self-organization allowed by the use of gossip for its construction. DPS [67] lever-
ages gossip-based protocols to group the nodes with overlapping interests (based
on their subscriptions) and form the basis of a self-organizing matching and dis-
semination layer.

7.2 Taming Networked Systems Complexity

Gossip-based networking can also be used to abstract the complexity of the
network onto which it operates, in order to ease the development of applications.

A first example is the Nylon [68] NAT-aware Peer Sampling Service. Indeed,
in real networks a majority of nodes lie behind NATs and firewalls and cannot
be contacted directly, which may have a strong impact on the operation of appli-
cations, including the gossip-based protocols we presented in this document. In
a similar way to the Peer Sampling Service protocols [28] presented in Section 3,
Nylon provides a continuous set of random peers from the network in the view
of each node, but each such node is attached with the necessary information for
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bypassing NATs, be it by opening connections from the destination node behind
the NAT or by the use of relay nodes. This is done in a purely gossip-based fash-
ion, with nodes periodically exchanging the information about their peers and
the associated contact details. Leitao et al. [69] also propose to leverage gossip-
based self-organization to tackle the natural imbalance that arises in networks
where some nodes are more difficult to reach than others.

Another example is given by the Dr Multicast [70] system. While IP multicast
is an efficient mechanism for dissemination, it is not always available in the whole
network, and when it is, it is typically limited in the number of groups supported
by the network elements. Vigfusson et al. propose to use gossip-based techniques
for propagating information about the memberships and activities of multicast
groups, and let a mapping that leverages the available IP multicast resources
for as much of the communications as possible, and relying on point-to-point
communication for the others.

7.3 Gossip-based networking and security aspects

An important aspect of large-scale systems that we did not mention yet in this in-
troduction paper is that of the security. Indeed, large scale systems are composed
of nodes that typically span over multiple administrative domains or end-users,
and there is a risk of witnessing byzantine behaviors from part of the nodes.

First, several proposal have been made to handle the case of nodes wishing
to bias the Peer Sampling Service, e.g., in order to favor a node over the others
or isolate a part of the network. Brahms [71], the Secure Peer Sampling [72],
and PuppetCast [73] are three examples of PSS protocols that take into account
the presence of byzantine nodes wishing to bias the sampling.

The BAR (Byzantine, Altruistic, Rational) model is used by the authors of
BAR gossip [74] to support byzantine and rational (selfish) nodes in a gossip-
based dissemination of messages in a network. An interesting aspect of the proto-
col is that the selection of partners for gossip is no longer made at random (e.g.,
by using a PSS), but by a pseudo-random selection that keeps the properties
of randomness that a PSS would typically provide. StarblabIT [75] is another
proposal of an intrusion-tolerant gossip-based dissemination protocol. It allows
to ensure the complete and authenticated dissemination of messages within a
group; while making sure that external attackers cannot hamper the dissemina-
tion (by guaranteeing reliability, authenticity and consistency).

Finally, gossip-based mechanisms are used in Whisper [76] for implementing
confidential group membership and communications in an autonomous and self-
organizing manner. Nodes leverage gossip-based overlay construction principles
to exchange alternative paths, that are used as anonymizing routes between
members of the group, without the need for a trusted third party for protecting
group members’ identifies and communications. In the context of authentication,
Yan et al. [77] propose to use gossip-based networking to implement group key
distribution.
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Gossip-based networking has also been leveraged in [78] to implement decen-
tralized failure detection in a large-scale setting. Guo et al. propose to implement
garbage collection using gossip in [79].

8 Conclusion

In massive-scale distributed systems, rigid control of the system’s operation is
inapt and can lead to severe bottlenecks and operational deficiencies. In the face
of –inevitable for such systems– continuous errors and failures, a self-adaptive
scheme with self-configuring and self-healing properties is more appropriate for
working around the errors. Such properties are known as self-* properties.

In this paper we advocated the importance of gossiping protocols in providing
self-* properties to distributed systems of very large scale. We classified gossiping
protocols in two categories. Peer sampling protocols, serving as sources of ran-
domly selected nodes from the whole network, and the standard (“traditional”)
gossiping protocols for serving specific application needs (data dissemination,
node clustering, data aggregation, etc.).

We identified a number of properties in gossiping protocols that make them
particularly attractive for large scale distributed systems. They are remarkably
robust and tolerant to faults, even to failures of very large scale. They distribute
the load across many nodes, leading to load balanced networks. Gossip-based
systems are inherently symmetric, in the sense that no node has special respon-
sibility at a particular task, therefore no fault at any single node may harm the
smooth operation for the whole community. They are very scalable, to millions
of nodes, and they disseminate, aggregate, or cluster data at exponential speed.
Last but not least, they are very simple.

By visiting a set of representative gossiping protocols, we gave insight to the
conceptual framework of epidemics, within which elegant, simple, and robust
algorithmic building blocks for large-scale systems can be proposed.
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